Weather Impact Modeling

Based on Joe Mitchell's slides

Old Paradigm: Human Centric Weather **Aviation** traffic manager **Forecast Products ATM** Automation ready for tailored to integration aviation needs 0 Next Generation . New Paradigm: Automation Co Matthias Steiner and Workshop 2: Weather Constraint Modeling Robert Sharman, NCAR Worksnop 2: Translation of Weather Information to TFM Impact METRON AVIATION March 3-4, 2008

Basic En Route Model

Modeling the impact of weather on capacity of airspace

More General Model

Weather-impacted region (Type 1) (Type 2) (Type 3)

Inputs: Region of Interest

- Region of airspace, R
- Subset of 2D space (polygonal domain)
- Subset of surface of sphere
- Subset of 3D space

Inputs: Time Horizon

- Time window, $[t_{I_1}, t_2]$, of interest
- Sliding time window $[t_1, t_2]$
- Updates every Δt

Inputs: Demand

- "Demand" given as a set of trajectories (flights) in spacetime:
 - τ : $(x_1, y_1, z_1, t_1), (x_2, y_2, z_2, t_2), (x_3, y_3, z_3, t_3), \dots$
- Each trajectory τ has associated with it
 - Probability distribution of time T_{τ} when τ enters R
 - Given by ETA estimator
 - Equipage class, *i*, which includes information about the aircraft, specifying a set Σ_i of preferences and parameters
 - Priority, specified as an integer $\in \{1, 2, ..., N_P\}$
 - Entrance point (or window), where it enters R
 - Exit point (or window) where it will leave R

Inputs: Demand

 Demand can be approximated be an aggregation of trajectories into flows, bucketed by time:

Inputs: Weather

- There are many types of weather events:
 - Convection
 - Icing conditions
 - Turbulence
 - Fog/Impeded visibility
 - Volcanic ash

• Let *j* indicate the type of weather event

Inputs: Weather

- Each type *j* of weather event:
 - $W_i(x,y,z,t) =$ intensity at position (*x*,*y*,*z*), time *t*
 - $-W_{j}(x,y,z,t)$ is not known with certainty, but is given by a probabilistic forecast *The event either*

- Binary impacts: $W_j(x,y,z,t) \in \{0,1\} \lt exists or it does not$

Impact region of weather event j for class i aircraft:

$$- I_{i,j}(t) = \{ (x, y, z) : W_j(x, y, z, t) \ge \xi_{i,j} \}$$

 Since impact regions can vary over time (dynamic weather), it is best to view impact regions as portions of space-time.

Inputs: Weather

- Each type *j* of weather event may have many forms of data input that yield the intensity map, $W_i(x,y,z,t)$
- Example: Icing

Weather Impacts on Routes

- "No-Go" constraints (avoidance model)
- Cost related to intensity/severity
- Limited total exposure
- Limited exposure bursts

Weather Impacts on Routes: "No-Go" Constraints

- Impact regions are "no-go" constraints
 - Routes *must* avoid regions whose intensity values are above a specified threshold, $\alpha_{i,i}$.
 - Optionally, there is a weather avoidance threshold, $\delta_{i,j}$, specifying a minimum clearance distance a route of equipage class *i* should stay from impact regions of weather

Also: Clearance above (in z) echo top

Hard constraint

type j.

Example: No-Go Above a Threshold

Weather Impacts on Routes: Function of Intensity/Severity

- Impact regions incur cost related to intensity along the route from *a* to *b*:
 - Intensity $I_j(x)$ at position x implies cost per unit distance of $g_{ij}(I_j(x))$, for a total cost of

$$\int_{a}^{b} g_{ij}(I_{j}(x)) dx$$

Can also take into account the probabilities associated with the weather event stochastic model

Example: Weighted Impact Cost

Example: Weighted Impact Costs

Weather Impacts on Routes: Limited Exposure

- Impact regions incur cost related to intensity along the route from *a* to *b*:
 - Total exposure parameter: Total travel (throughout R) cannot exceed $D_{i,j}^{max}$
 - Alternation parameters:
 - Can travel $\leq d_{i,j}$ in region of type j if followed by travel of $\geq D_{i,j}$ outside regions of type j

$$\mu = d_{i,j} \quad \mu' = D_{i,j}$$

Discussion: Do these limited exposure models reflect any actual aircraft-weather interactions?

Inputs: Set Σ_i of Preferences/Parameters

- RNP parameter, $\delta_{RNP,i}$, specifying how closely an aircraft of class *i* can follow a specified route
- For each type *j* of weather constraint, and for each equipage class *i*:
 - Offset (clearance) $\varepsilon_{i,j}$ to be applied to type *j* impact regions to be treated as "no-go" constraints for intensities above a threshold, $\alpha_{i,j}$
 - Cost function g(I), cost per unit distance in type j regions of intensity I.
 - Total exposure parameter: Total travel (throughout *R*) cannot exceed $D_{i,j}^{max}$
 - Alternation parameters for exposure bursts:
 - Can travel $\leq d_{i,j}$ in region of type j if followed by travel of $\geq D_{i,j}$ outside regions of type j 19

Model of Hard/Soft Constraints

- Hard, soft, and everything in between:
 - Each class *i* of aircraft (equipage, preferences, etc) has an *interaction profile* with each type *j* of weather event
- Weather Impact Interaction Grid
- Multiclass capacity

Model of Hard/Soft Constraints

- Simple, 2-class, 2-type example:
 - Class 1: Avoid type-1 (red) constraints ("Hard"), but can ignore type-2 (blue) constraints ("Soft")
 - Class 2: Must avoid both type-1 and type-2 constraints (Hard and Soft)

Weather Impact Interaction Grid

Weather event type j

		lcing	Turbulence	Fog	Visibility
Aircraft class i	1	Light OK Moderate: limit total exposure Extreme: no-go			
	2	Light: alternation parameters Moderate: No-go			
	3				23

Stochastic Model of Weather

- The intensity, $W_j(x,y,z,t)$, of weather of type *j* is not known with certainty, but is given by a probabilistic forecast
- How to model the random function $W_j(x,y,z,t)$?

Probability of What?

- Ambiguity in
 - timing & location
 - definition of "event"
 - communication
- <u>Probability</u> of
 - presence of weather hazard in space & time
 - hazard exceeding critical threshold intensity
 - structure & organization of weather hazard
- What do aviation users want?

Stochastic Model of Weather

- One method: probabilistic pixel grid (or forecast of gridded pdf's):
- For each (x,y,z,t) we get a probability density function (pdf) for the random variable $W_j(x,y,z,t)$ \int_{pdf} yfintensityfintensity

Stochastic Model of Weather

• Another method: Ensemble of forecasts

Discussion: How many? How to assess prior probabilities?

Stochastic Models: Ensembles

Space of all possible forecasts F: probabilities p(F)

Merging a variety of turbulence diagnostics into GTG

6 h forecast valid at 5 Feb 2006 00Z

Flight level: 350

provide a measure of "forecast confidence"

Matthias Steiner and
Robert Sharman, NCARWorkshop 2: Weather Constraint Modeling
March 3-4, 2008Translation of Weather Information to TFM ImpactMarch 3-4, 2008

Matthias Steiner and Robert Sharman, NCAR Translation of Weather Information to TFM Impact March 3-4, 2008

METRON AVIATION

Visualization of Ensemble Forecasts

Workshop 2: Weather Constraint Modeling Robert Sharman, NCAR Workshop 2: Weather Constra Translation of Weather Information to TFM Impact March 3-4, 2008

Stochastic Model of Weather

 Issue: Grid does not explicitly model spatial and temporal dependencies/correlations

Forecast F_1 , prob = 0.5 Forecast F_2 , prob = 0.5

Each pixel has a simple Bernoulli distribution, with P(blocked) given by the values (0, 0.5, 1.0) shown

P(flow is feasible) = ? 0.5 ? (0.5)² ?

Ensemble model: Prob = 0

Variations on a Forecast

 Uncertainty on when exact a weather event impacts and moves through a region:

Probabilities 0.25 each

P(flow is feasible) = ? (0.75)⁴ ? (indep) 0.25 ?

BUT, P(there is east-west capacity of at least 2 lanes) = 1

NOTE: P(north-south lane) = 0 !

Interactions with Probabilistic Weather

• What is the probability a route π is feasible with respect to constraints?

Capacity Estimation: Probabilistic Weather

 For capacity estimation, exact shape of weather impact region is not as significant as its "porosity"

Clustered Ensemble Models

- Use variations on seed forecasts
- Much fewer seeds
- Each cluster of forecasts is based on a variation model centered on a seed:
 - Vary time (errors in time)
 - Vary intensity map (shift up/down), thereby impacting coverage
 - Vary translation (x, y)
 - Vary echo tops

•What distributions to use for variations on seed forecasts? ΔT , ΔC overage, ΔT ranslation, ΔT ops, etc.